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The Hamilton-Jacobi Theory of Dynamics

by

L. Nordheim, G6ttingen and
E. Fues, Stuttgart

i. General statement of the question. In the previous

chapter the principles of mechanics in their most general fo_n

as well as the equations of motion which arise irom them were

stated and discussed. Following this the next natural question

is, how do we go about the actual integration of these equations

and if in particular we cannot draw important conclusions from

their character as differential equations of mechanics. This is

indeed to a large degree the case, especially with problems for

which a kinetic potential exists (cf. Chap. 2, No. i0).

For this mainly the theory of integration was developed

systematicly by Jacobi I) and Hamilton2). It is of very great

importance on the one hand for celestial mechanics and on the

other for the atom; this is beca, se. for both, at least as long

as one disregards the periods v__z reaction forces of radiation,

there are neither bonds nor non-conuervative forces.

Its development will take plac_ in three steps. First,

we will attempt to get the simplest possible form for the

differential equations. This leads us to the canonical equations

I)G. C. Jacobi, Vorlesungen ,iber Dynamik, Werke Supplement-
band, 2. Aufl., Berlin 1888.

2)W. A. Hamilton, Brit. Ass. Rep. 1834, S. 513; Phil. Trans.
1835, S. 95.
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of mechanics. Second, we can question the genera] laws of trails-

formations ot these differential equations in which tbey retain

their form. This leads us to the canonical transformations and

the theory of their most important invariants. Third, we will

present the actual theory of integration of the canonical

equation systems which consists of the setting up and integration

of the Hamiltonian partial differential equation.

The limitation already introduced above to systems with a

kinetic potential is the same which makes the Hamiltonian principle

an actual variation principle. Therefore, the application ol the

methods of the calculus of variations leads us to expect a very

great facilitation, and also the deeper significance of the

singular Hamilton-Jacobi integration process is only disclosed by

it. We will return to this at the conclusion, l)

As an up-to-date presentation we mention above all the book

by Whittaker. 2) The first systematic development which was also

<, of fundamental significance to the point was given by Jacobi 3)

l)The following presentations are similar in many respects,

especially in the application of the calculus of variation, to
those which one of us heard (Nor_heim) in lectures by Hilbert.

Also here we would like to thank sincerely Mr. (Privy Councillor)
Hilbert for permission to use them.

2)E. T. A. Whittaker._ Analytical Dynamics, 2. Aufl.,
Cambridge 1917, Deutsche Ubersetzung von F. u. K. Mittelsten-
Scheid, Berlin: Julius Springer 1924.

3)Siehe Anm. i von S 91[':. • •
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in his famous lecture on dynamics. Many important _elationships,

especially regarding the theory of canonical transformations,

are contained in the investigations of l,ie. I)

Our starting point is the Hamiltonian principle. We assume

therefore, that a kinetic potential (cf. Chap. 2, No i0) exisLs,

which is a function of the coordinates and velocities L (qk, qk, t),

and the movements of the system sho-'Id satisfy the Hamilton_an

principle (see Chap• 2, No. 22).

t_

] L(9_, qt. t)dt = Extremum (1)
|i

According to the calculus of variations, they are stated as

d(eL) _L Ck 1,2. /) (2)_i_ - e_=° = ..

L thereby can be of the most general form, and can therefore

contain even the time t. Likewise forces are also admitted

which depend on the velocities in the sense of Chap. 2, No. i0.

For a single electron, for example, the Lagrange function in the

most general case, that _s, with regard to the special theory of

relativity and under the influence of any given number of electri-

cal and magnetic fields, which arise from the potentials

(and A, is L=m0: t-- l--_, + c D e_. (3)

The expression to the left in (2) one calls the variation

derivative of L according to qk" For the sake of brevity we

I)S. Lie, Theorie de= Transformatio.:sgruppen, Bd. I-III,

Leipzig 1888-1890, insbesondere Bd. II.

1969028902-004
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will designate it with the abbreviation [L]qk:

,I (+[+I +'[+ (4)
l'+_k -- dtW il/ -- +"qk"

2. Reduction of the problem to the canonical form. We now

take the first step and attempt to find a new simpler form for

the variation problem. In formula (i) of No. i, L is a fm,ction

of qk, qk and possibly even t. Obviously we would get a simpler

problem in a certain respect if we could eliminate the derivatives

qk as new variables to vary independently by placing

- k+= o (t)

The variation problem is then expressed
t,

fL (q+. k+. I)dt = Extremum. ( 2)
tl

whereby now, to be sure, the equations (i) are to be added as

side conditions.

The latter can be treated in the known manner with the

Lagrange factor method I). We multiply them with the still-to-be-

determined factors and solve the absolute variations problem

now with 3f unknowns:
t,

• f{t +_.,@,-- k,)}d, ----Extremmm. (3)t,

Here one can determine the from the requirement that the

l)In the present problem naturally also the neighboring
curves should satisfy the'side conditions. One has to make use
of them even before the variation in contrast to the usual

non-holonomis side conditions, in which the neighboring curves
do not satisfy the side conditions as in Chapter 2, No. 20 and
27.

t .

1969028902-005
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variation derivatives according to the new variable k,
JL

must disappear. Since within thp brackets the k 2 does not occur,

_L OL

the equations can be reduced to ek;--_=O; _z=_e.

Thus the _ K are determined. _ae can introduce their value and

obtain a free variation problem with 2f unknown functions

I }[ L(q_.,kk, t) " _-_eL+,2./-b-k-_ (Ok -- kk) dt = Extremum.
,; , (4)

Hereby the extremum is to be selected among all functions qk(t)

and kk(t ) whereby, however, no marginal conditions may be ascribed

to the kk since their derivatives do not enter into the integral

and also (i) of No. 2 contains no conditions for the qk. That the

requirement (4) is actually fully equivalent to (i) ot No. i can

be seen from the following. The conditions for the desired

functions are L[L+,_k_er,.
I

_qk- kk)]_ = O,

[L .--_ _]- _qk -- kk) kk= -- _k, .... _kk' (Ok-- kk) = O.

Here the second line says that, aside from the singular cases

_/ k2 = 0 to be excluded here, qk = kk" If we insert this

into the first line then we return to the original form (I) of

No. 2.

This proof of equality is necessary since in and of itself

__ (3) viz (4) does not at all completely agree with (I) of No. I.

This is because the extremum in (I) of No. i is to be sought among

1969028902-006
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all values which arise by inserting all arbitrary functions

qk(t) in L. The qk the_-ehy are naturally included. In (3)

on the other hand, the kk are still to be taken as arbitrary

functions. Correspondingly the region in which the extremum

must be sought is a much broader one. Actually it can be shown

as that in case the actual path curve makes the integral (i) of

No0 1 atrue minimum, this with (4) can not be the case, but that

then this integral assumes a saddle val_e __n such a way that it,

with at first fixed but arbitrarily chosen qk(t), is to be made

a maximum with respect to kk(t ) and only after _ondition the

qk(t) are to be chosen so that then the integral becomes a minimum

with respect to its variations. This has been shown by Hilbert

in his lectures.

For the purposes of mechanics, however, the character of

the extremum, that is, whether maximum, minimum or (as here)

saddle value, is of no consequence. It is only important that

the variation derivatives for the various forms of the variation

_ problem become identical and therewith the curves, which make

the integral an extreme-value, that is, the desired path curves.

Therefore we will not go into this matter any further here, but

will only mention that for sutficientl_ small regions the

_. Hamiltonian integral (2) for the true motion becomes an actual

mi_,imum I)

_ !)Siehe z. B. das in Anm. I von S. 92 zitierte Buch von

_: Whittaker, Analytlsche Dynamik, S. 265.

1969028902-007
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Form (4) will be dealt with later. Here we will first go

one step further by introducing in place of kk as a new unknown

the generalized momentum (see Chap. 2, No. ii).

_L Iq,, k,) eL Iq,._,) (5)Pk= ok. = a¢i

By means of (5), the k k become functions of Pk, qk and possibly

1. p }of t, an_ (4) receives the form /. kq_--H(pk, qt, t_ /t=Extremum,

(6)

\_. eL_ ,_. ez.whereby H = --L +_it. t_kek _ _ --L + qt_k k

(7)

signifies the so-called Hamiltonian function. Thereby in H the

kk are to be thought of as expressions of Pk, qk, t. Equation

(6) has now the simplest form which an absolute variation problem

can assume in that only the derivative q of the one series of

variables occur and there occur only linearly and multiplied wiLh

the other variables themselves. It is therefo=e called canonical.

Correspondingly one calls the qk and Pk also canonical variables

and especially the Pk the canonically conjugated momenta to the

qk" A proof of equivalency of (4) with (6) is obtained by a

direct transformation from (4).

From the variables Pk' qk one moreover returns easily to the

variables kk (viz qk), qk" For this wc differentiate H partially

according to Pk

_p.- _. -@_,_p + _p._,+ k.- k..

1969028902-008



" 8 ""

From this we further get

OH

Therefore the change from L to H is of the same form as the

reverse from H to L. One designates it as Legendre transformation

which also plays an important role in many other areas cf mathe-

matics and physics. It produces, for example, in thermodynamics

the transformation between the various thermodynamic potentials.

In the new variables the differential equation of the

variation problem, that is the equations of motion of the system,

are especially simple form. They are at first [_p_,_Hi,=0 '

,,],=o
and can be reduced, as one can see, to

dqj _H ]

at = _-p-_'
dpt _H

-d,-= -- (9)

These are the so-called canonical equations of mechanics which

are the starting point for most of the studies of higher dynamics.

In place of the system of 2. order of the f Lagrange differential

equations (2) of No. i for the qk' they form a system of i. order

of 2f differential equations for the qk and Pk" They are

according to their derivation completely equivalent to the

former.

One can perform the transformation of the differential

equations of a mech@nlcal system to the canonical fork even i _.

1969028902-009
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all side conditions are not eliminated but are carried along

separately. If these side conditions are _,(qk.O=0,

then the corresponding Hamilton'an equations are

£H

#k= ep. '

0q. (to)

If the conditions are of the non-holonomic form

__,a,k6qk : O,
r

then in place of the second row in (lO) we place

h - _H
- _q,+_ga,,. (iOa)g

However, the use of these equations gives us no advantage since

their symmetry has been lostl).

We now ask concerning the mechanical significance of quantity

H. If, as is usu_11y the case, the kinetic energy "t'is a

homogeneous quadratic function of qk, then according to the Euler

law for homogeneous functions the following is true:

I _-IdT.

k

And then, since L - T-U according to our assumptions:

_k-_ dL. _"_ dT.P'#* =_. T_'q* 2T,
A,

in case the potential energy V does not depend on the velocities.

Accordingly then under the given limitations

l)Siehe hierzu T. P_schl, C. R. Bd. 156, S. 1829. 1913; S.
Dauthevllle, S. M. T. Bull. Bd. 37, S. 120. 1o09.

l

1969028902-010
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H =--L + _._/_k;tJ,_--IT U-- 2T T_, U
k (12)

is the total energy of the system.

The recipe for setting up the canonical equations is therefore

as simple as can be imagined. One needs to know only the energy

as a function of the coordinates and momenta in order to be able

to write them down in_nediately. Acording to (12) it should be

- noted, however, that this simple mechanical meaning of H is only

valid under the conditions of (ii). For other cases, for example,

with reference to a rotating coordinate system, H is no longer

the energy, and one has to go back to equation (7) to determine

the Hamiltonian function I)

A first integral of the motion equations is obtained

immediately, if the Hamiltonian function does not explicitely

contain the time. If one multiplies the canonical equations

(9) with qk _r, as the case might be, with Pk, then from them

_H _24 . _Z-/ (13)
k k k k

H = const. = W

is therefore an integral of the canonical equations. In the

just mentioned simplest case, this is nothing but conservation

of energy.

l)About the Hamiltonian function and integration theory

in relativistic mechanics see Chapter i0 of the volume of

Handbook. Also see J. Frenkel, Lebrbuch der Elektrodynamik,
Chapter i0, pp. 330 ff. Berlin 1926.

1969028902-011



- Ii -

If, further, the Hamiltonian function does not explicitly

contain acc, ordinate, i.e. ql' then it follows immediately
_H

#1 ---- -- _q_ = O, Px = konst. (14)

We therefore again have an integral of the canonical equations.

In the same manner, for example, the conservation law p = const.

follows in the case of the Kepler motion, whose Hamiltonian

function is written in plane polar coordinates r,

,( ,n=_ p_+_p_) a, (15)

Certainly in connection with this example, in which has the

meaning of the azimuth in the path plane, one calls such co-

ordinates, of which the Hamiltonian function is independent, cyclic

variables. This case always occurs when the energy of the random

value of one coordinate is not affected, therefore, f_r example,

is not changed when the entire system is translated or rotated.

One obtains thus for free systems, for example, the center of

gravity and surfaces. We will return to this in No. 9 and Ii.

(Cf. also No. ii of the previous Chapter 2).

3. Canonical Transformations. We now turn to our second

question and investigate what kinds of transformations of the

variableq can be made while preserving the canonical form of the

motion equations.

We therefore look for substitutions

q_= q_(Q,.PJ.O.i (1)f'_= _',(Q,.e,.O.I

;7,

1969028902-012
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which changes the variation problem (6), No. 2 into an equivalent

one with a new Hamiltonian function K
t,

P_Q.k- If (Pk, Ok, l)} dt = Extremum (2)
ti

Thereby it is not required that the two integrals themselves

become identical but only that they assume their extremum at the

same time; that means, when the integral (6) of No. 2 for the

functions qk(t), Pk(t) assumes its extreme-value, then the integral

(2) for those functions Ok(t), Pk(t) should do it also; these

functions result from qk and Pk by means of the substitution

inverse to (I).

This is then and only then guaranteed when the two integrands

differ only by the complete derivative of an otherwise arbitrary

function (Qk, Pk, t) according to t. For such a one the

integral is independent of the path and produces in all cases

with fixed integration limits a constant amount, which influences

the occurance of an extremum in no way. The condition, which

Qk and Pk must fulfill, is stated thusly

• clq_(p,Q,t)._p._.- n =.Z e_q_-K-+--_,- (3)

This condition must naturally be true also for all non-

mechanical, varied integration paths in the p, q, t space.

Since now between the qk no kinematic conditions are supposed

to exist, then one can write more clearly for (3)

_'p.J,t_- Hzt=_,.40.- _At+ 4_ (4)

_Z

] 969028902-0] 3
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which condition must be fullfilled for any arbitrary choice of

differentials &qk' &Qk' &t" Here _ is explained by

_ _,_ \7 _,_ a_
v L

in which i_ek is _lreadydefer_,dby Aqk' AQk' A t since
(with a definite _t) obviously between the 4f differentials

qk, _ Pk _ Qk' _ Pk always the 2f relationships

cgqk

t l

t

exist. The fundamental determinant of transformation (I) we

naturally assume here to be _ O.

In order to obtain from (4) real conditions for the trans-

fo_nation equations (I), we introduce in _ in place of Pk the

qk in that we think of the relationship

according to Pk as beir.g solved for:

We assume that this solution is possible, thereby changes into

a function V(qk, Qk, t). Then out of (4) we get

mit _V OV aV

with ZV = _ zq. • (4a)
I" k

So that equation (4a) iJ satisfied identically, the factors of

_qk, _Qk, _ t must be equal on both sides:

"' ' OF

_'=-_' (5)
• ."" K = H + _____

"_;i

1969028902-014
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Since one can calculate from the equations of the second line

in general the qk from those of the first and then the Pk as

functions of Pk' Qk, the equations (5) with an arbit=ary choce of

function V(q k, Qk' t) always produce a canonical transformation,

whereby the new Hamiltonian function K is given by the third line.

The function V is called the generator of the _ransformation.

The new canonical transformations are:

_V

dP, _lf dQ_ _ dA". A" -_ H + d-t-"-dr -=-- _Qk ' dt -- gPk'

It especially V does not contain the time explicitly, then simply

K=H.

It is very remarkable that the canonical transformations are

independent of the special mechanical problems. The property of

a transformation to be canonical does not depend, therefore, at

all on the nature of the considered problem, but is peculiar to

it itself.

We have just favoured the variables qk' Ok in the generator

V. We could just as well have taken any f of the variables qk,

Pk and f of the Qk, Pk" The general result can then be expressedl):

If V(x k, X k, t) is an arbitrary function of 2f + i variables Xk,

Xk, t whereby the X_ (K - i, .... f) are any of the variables

qk' Pk, the X k are any of the Qk, Pk' then

l)Siehe M. Born, Vorlesungen _er Atommechanik, S. 35.

Berlin 1925; vgl. auBerdem die Einzelausf_hrungen im folgenden

Kap. 4, Ziff. 3, ds. Bd. des Handbuehs.

4:

1969028902-015
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6V

Yk ----4- 6x_'
FV

Yk = T _ X,'

K=n4- <'r (6)i:

is a canonical transformation. Thereby Yk is conjugated with Xk,

Yk with Xk and the upper symbol is valid when differentiating

according, to the coordinates, the lower when differentiating

according to momentum. Very often the canonical transformation

is used the form

V = V (q,,,P_, O,
_V

OV

q_= +_P_" (Sa)

Each one of the transformations of the position coordinates

above I K- IK (qlDtl

which is designated as a point transformation, since it changes

each point in the locus of qk into such a one, is also canonical.

One needs only to take as a transformation function

V= -Xq,<Q,)P, (7)

and then according to (6) 0v
q.= -_;.= q_(Q,).

The identical transformation is contained within

(8)

Above and beyond this the theory of canonical transformations

permits the introduction of general dynamic coordinates in such

an extraordinarily free manner that their choice can be adapted

very exactly to each problem. With the general transformations

1969028902-016
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(6) naturally the character of the variables QkPk as location

and momenta coordinates is lost. Only in their totality do they

give a picture of location and motion states of the system under

consideration. Because of their mathematical relationship with

the tangential transformations of geormetry, these transformations

are frequently given the name tangential transformations.

One can also list other canonical transformations which

fulfill certain side conditions if the latter can be brought into

the form of a relationship between the old and the new coordinates

#, (qk,Q_,t) = o (9)

These can simply be listed with the identity (4) with Lagrange

multiplicators and one obtains then as determiner equations

of the correspending canonical transformations

OV Z2t, O#,Pk= _-Q7+ OQ_"r

&v Z OD,p. = - _ - a, oq--;. (10)I"

K = H'k-Ti ' _----__-_T"

which together with relationships (9) are sufficient to determine

the quantities qk, Pk, _ r as functions of Qk' Pk" A special

ease of this is, for example, the existence of a side condition

for the original coordinates.

Finally one would have been able to multiply the left side

of (3) also with a constant factor _ without destroying the

property of the transformation to be canonical. That leads us,

I

1969028902-017
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for example, to transformations of the type

which are often used. On the other hand the general fo_n of

the tangential transformation usual to geometry-- _ an arbitrary

function of the variables--is not applicable here.

f

, The canonical transformations are, as stated, independent of

the choice of the special Hamiltonian function. If one therefore

wants to have only the conditions for the transformations of Pk,

qk into Pk' Qk, then one can limite himself in (4) to the

variations with _ t_Ojthat is, treat t as a constant parameter.

If we designate these variations for the sake of distinction with

a g , then one can write the conditions for canonical trans-

formations also in the form

__.P,_q_=_Pk_Qk + b_(P_, _, t) (12)
It k

in which no reference is made at all to the special mechanical

problem. The variations _ and _ are thereby in each case

explained by i)

+ _"_4p_ +AF(p_, q_, l) c_F OF OF
k

Equation (12) has thereby for the characterization of the

transformation the same degree of generality as (4) and one needs

l)The symbols _ and f are chosen in analogy with the

general and virtual shifts in Chapter 2, No. 23. The difference

is merely that now also _k can be varied since it also appears
as a variable in the variation problem.

1969028902-018
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the latter form only to designate the new Hamilton fanction.

Naturally one can introduce also in _ as previously in place of

P the q and obtain the explicit transformation equations (5)

with the help of the function V(qk, Ok , t).

With the introduction of the canonical transformations the

most important step in the integration theory of mechanical

equations is already taken. This will be presented in No. 12ff.

In order to understand them a knowledge of Nos. 4 to ]i, which

give further explanation about the properties of canonical trans-

formations, is not absolutely necessary. These can therefole be

skipped during preliminary study.

4. Introduction of time as canonical variable. Above and

beyond the canonical variation problem one can arrive at a still

more systematic fol_n of the general variation principle of

mechanics by divesting time of its special role. First one can

formally eliminate from the integral in equation (6), No. 2 the

Hamiltonian function H_, q, t) still remaining t-here by adding

a side conLition and requiring /(_P_qk- W)dt= Extrem_m
(I)

among the side conditions

oo--
If we now introduce in place of t a new parameter "_ , t = t('_'),

the arc of the path curve or in the theory of relativity the

Eigenzut (proper time) then we get the form

1969028902-019
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f/V _ ,t,/, . ,tt I
"' d, --It d,ld, =. Extremum,Jl+with

J (2)
W =-:H(p. q, 1)

as side condition. This form suggests that we introduce t itself

as a new canonical variable _ , to which the _ = -W is

conjugated as momentum. Through this we obtain the absolutely

symetrical form

f{d.P,_ + pq'}dr _- Extremum, (3)

while F(Pk, qt, P, q,) H + p = H -- W = O,

(4)

In this the dash characterizes the derivative according to

The mechanical system is then no longer characterized by a

function, the Hamiltonian function, but an equation, namely

F(pk,q,, p, q) H--W=o (4)

between the 2f + 2 canonical variables and momenta. This form

of the variation problem can also be applied, for exam.pie, to the

theory of relativity. In general, in Flace of F ---H-W an

arbitrary function F(p, q, W, t) = 0 can appear, but through

solving according to W always the canonical form (4) can be

obtained.

The general motion equations become according to the multi-

plicator rule of No. 2

_, " + _ol,J ' -27,-- + _p - - _# '

dp. _ _F ,dp d_t" . OP l (5)kdT =- _., _'( -27,=--,t-6-f.

"f

7'

1969028902-020
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which for the canonical form F = H-W because

at . iF i(fI - _W)a, =--J'_W=--;" ,:w =,i

:_ can be reduced to the usual canonical equations

dqk d iltl -- W) (It dW dr 6(H -- W) _H
d, dt :- i P_-- = ('Pk ' dr dt 6t B[' Jdpk d, 6(tt -- IV) FH ,It

= --_ ..... _ , =;. (6)d, dt cJq_ ¢'q_ dr

Also the canonical equations can be generalized so thac

they include time. For this the necessary and sufficient condi-

tion obviously that the differential form

witIi which the variables Pk, qk, p , t are still joined by the

side condition H _" _ = O

(7)

should change to a differential form _,PkAQk+_AT+_q '

the variables of which aro joined by a corresponding side con-

dition: K _" _ ---O

Tbus each arbitrary canonical transformation of 2f + 2 variables

qk' Pk' t, _ renders into Qk, Pk' T, _ , which therefore are

generated by an arbitrary function V*(qk, Qk, t, T). Thereby

the function is to be so designated that one undertakes the

transformation in equation (7), solves the thus obtained relation-

ship and finds _ - -E(QI,P_o

1969028902-021
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If especially t is not to be transformed, that is, if t

changes to T, then V* has the form V*=_t-L-V(qk,Q_,t),

since then according Eo No. 3, equation (6)

T= _V*

that is _v _v
-_ = A'(Qk,-P_,t) = W + -er = H + -et

One thus returns to the formulas of No. 3.

5. Integral invariants. As with every transformation, the

question as to the invariants is of great importance also with

the canonical transformations, that is, the question as to functions

which do not change their value in the tr,nsformation. One can

give a series of such invariants of all canonical transformations.

We will discuss next the integral invariants first considered by

Poincar_).

The integral l.=ff dt,,dq,.
(1)

extended over an arbitrary two dimensional area of the 2f--

dimensional phase space of the Pk and qk is an invariant of the

canonical transformations. To prove that, we set up this two

dimensional area so that we give Pk and qk as function of two

i) H. Poincar_, Les _d_hodes nouvelles de la m_canique

c_leste, Bd. III, Y.ap. 22/24. Paris 1899. Bewels nach E. Brody,
ES. f. Phys. Bd. 6, S. 224, 1921.
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parameters u and v.
gPk ;q_ L

J1 = <Tu gu ' dudv.
.. "x gp_ dq, '

<v ev (2)

The canonical transformations are taken in the form

p _ _V(q_,P_,t)
i -- _q7 --'

O, ev_q,.P,.t) (3)= -- c_p, -

and by means of q the equations of the first line. change the

Pk as functions of the qk, Pk into Jl. whereby the value of t

in (3) remains constant, therefore t is to be treated as a constant

parameter. Then

G% (qk I : _'__ c_W ('Pi i ;__ _Pl _qt 1

_7 fP< (qt D I _ {il" f'Pl _'ql, _Tqic3Pi 63P1 cGqil,
I

k {V 7V. k f --/_ _ll,_-J_ _v @V ki - OV _V il

By exchanging the indicator we get for this

i

_P_ _q'i
"_ _2V i _u vu :

• 6v Ov

If we now with the help of the seconf row of equations (3) change

the qk, Pk into Qk, Pk, then we get

@ e2>,a_O.i.

And then it finally becomes

_',. @, I ,_<_P.e.O.I

Op_ = 18P_, 19Qi '
" i-_-f W (4)

with which the invariance of the integral (I) is proven.

Analoguusly we earl prove that invarianee of

L
t

f
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and generally that of

_ :",,, 1" V ,l_, dpk.dq_ dqk.
I.-I" ".I_.._..k.""_,•..... (6)

The last integral of this series is the volu_.e in the phase

space of Pk and qk"
J/= /."/. /,tp, ... dP/aql ... dqt,

(7)

which is therefore also an invariant with respect to canonical

transformations. Thus it is simultaneously demonstrated thac the

fundamental determinant of a canonical transformation is equal to

(1).

As we will show later (No. 9), the time change of the

coordinates and momenta of a mechanical system can also b_

regarded as a canonical transformation of the same. All invariants

of canonical transformations are therefore also motion invariants.

This is so to be understood, that the points of the corresponding

2n-dimensional areas in the phase space are to be thought of as

image points of a corresponding multiplicity of similar mechanical

systems with somewhat different initial positions. Through the

motion of these systems the original value region of the p, q

over which we are to integrate is changed into a different arc

which, according to our law, has the same volume. In the pqt-

space therefore the world line of these systems forms a tube of

constant diameter. For Jf this is the Liouville principle

fundamental to statistical mechanics.

m ----
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The integral invariants (I) and (6) to (7) are called

absolute, because in them oveL the integral region no prerequisites

are made. They can be changed with the help of the multi-

dimensional generalizations of the Stoke principle into relative,

that is, over the closed integral region into extending integral

"3invariants, whose order, that is, number of integrations,

lower. For example, in place of (i) comes the invariance of the

integral to be taken over a closed curve of the pq-space (which

would have to be in the pqt-space oi_ a plane t = const.).

:, = _'Zmq,., (8)

From the existence of the integral invariant (8) viz (2)

for a system of transformation equations

qt= qt(Q_PkO, }Pt= P,(QtPt t) _ (9)

it follows inversely, as will be shown in No. 6, that they

can be brought into form No. 3, equation (6), and that therefore

the used transformation is canonical.

If one choses as integration region in (i) that of two

infinitesimal vectors of the pq-space whose components are dqk ,

dPk , vi____z._qk, _ Pk, a stretched parallelogram, then the

invariance of the bilinear covariants which belong to the

differential form _ Pk dqk follows

( p dqk--d (10)

Also their invariance is, according to what has been said,

sufficient for the canonical nature of a transformation. Moreover,

' • , Ni II_ i iJ.............. i ii ,IIIL |II
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the invariance of (i0) according to _bat which we said about

equation (3) is only true when either V is independent of t or

the two small vectors together with their images in the P_t-

space lie on plane t = const., that is, when they are g- varia-

tions in the sense of No. 3. Otherwise (i0) is not invariant,

but the covariant belonging to the differential form

_Pk - Hdtdq k

_'(Apkdqk--d#,.[q_)--(;ttdt--dHAt). (11)
k

6. The conditions for canonical transformations_ expressed

by means of the Lagrange and the Poisson-Jacobi bracket symbols.

One designates the expressions in No. 5(4)

_.'6q_ &Pk Jp_ _2qk

gPk (q_ i

----___ _._' -c)z,,ip" 6q_-i_" I (i)Lor Ov I

as Lagrange bracket expressions. They are, as we saw there,

invariant with respect to canonical transformations. Under u and

v were understood in No. 5 any parameters coordinate with the

coordinate values of a two-dimensional sections of the pq-space.

As such the coordinate values themselves may naturally serve.

This leads to the equations EP.P_]=[q_,q_]=0, 1

[q_,1_k]=6i _--- 0 fiir i@=k /, i.-," (2)

Their invariance signifies the correctness also of the equations

[P,. P_] = [O,,Ok]ffi o, } (3)[Q,.Pd = a,_,

:r
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whenever the transformation (p, q)--_ (P, Q) is canonical.

Conversely equations (3) are sufficient to assure the canonical

character of the transformations as we will soon show. They are

therefore the characteristic differential equations which the

p, q as functions of P, Q must satisfy, so that the transformation

is canonical. The proof is stated as follows:

Equations (3) in their complete form are

\6Q, 6P_ -- 3(22 cP,] =l

_'_teq,ep, ,p,eq,liQ,.,Q.L- ___._Q_eQ;- ;_.7:_,: = o,
l

= _(!e,_ ep, ::' _q'-I•P" P_] _. _P_ _Pj ip^ i15] =0"
l

They can be rewritten as follows

) ::..:,., )
_-p. Pt- _p_ PtbPjI -=O.

These equations mean, however, that a function _(Qk, Pk' t)

exists for which _-_ eq, o_

and h _-p_= -_-,l

t"
If one now forms the _-variations of

c_do . 'K"_d,/, .p
_=_ _q, +/___-Eo _.

" --
and considers

k

'_1[ _-_ a IIRU_IW,,_,,_'ImI_. _ .................................

i
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then one gets ,_,l,=_.pt,)q___-.pk,_Q_"
k

Therefore for the transformation formula

q_= q,(Q,,P,, t), Pk= t,k(Q,,P,, t) (4)

the relationship (12), No. 3:

_.'pkhq, = x.'I),,SQk+ bq,(I', Q, t).
k k

With other words, transformation (4) is canonical.

With this we have demonstrated the proof for the claim

stated earlier in cannection with No. 5 (8) that the existence

of the invariants No. 5 (8) or No. 5 (2) is sufficient to assure

the canonical character of transformation (4). Those invariants

are derived from equations (3).

Closely related to the Lagrange bracket expressions are the

symbols named after Poisson or Jacobi.

_g,t ._ev e. /
(,,,v)-_.rk _eq_et,k op, _T,]" (5)

The relationship of the two exists in the fact that for any 2f

independent functions Ul, .....u2f of the Pk, qk these equations

are valid: _..

(6)

They can be confirmed inmaediately by direct calculation taking

z/

into account that the sums _ou,_y

only then can differ from zero and are equal to one when x and

y mean the same as the quantities Pk, qk"

q969028902-028
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Equations (3) and (6) produce as further necessary and

sufficient properties of a canonical transformation the system

(p.. ., _Q,,Q_)-=o.

,9. i',)--_,,, (7)

by taking for the u t the Pk and Qk themselves. They produce

the differential equations which the new variables P, Q must

fulfill as functions of the original p, q (therefore inverse

formula of the transformation) so that this is canonical. Equations

(7) are synonomous with the unvariance of the corresponding special

bracket symbols. With the help of (6), however, the invariance of

the Poisson bracket (u, v) is proven for any two functions u and

v of qkPk from the invariance of [u, v].

7. Further properties of the bracket symbols_ the laws

(principle_ of Poisson and Lagrange. The Poisson bracket symbols

have recently attained special significance as the result of their

introduction into quantum mechanics _. Therefore a few further

calculating rules and laws related to them will be listed here.

First, according to definition (5) of No. 6 the identities

hold (u,I_= 0, (u,v)= -(v._), Iau
=(.,_) = -(_,u), _u

= ") = -("' J (1)

l)Vgl, besonders die Arbeiten yon P. A. M. Dirac in den

Proe, Roy, Soc. London (A), Bd. 109, S. 642, 1925; ii0, S. 561,
1926; iii, S. 281, 405, 1926.

I
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(u, (v, w)) + (v, (w, u)) + (w, (u, v)) = 0 (2)

The left side is obviously linear and homogeneous in the second

derivatives of u, v, w. We now take together the members which

contain the second derivatives of u. The first member of (2)

certainly contains only first derivatives. The second and third

can be written according to (i) in the form

(v, (w,u))+ (w, (u,v)) = (v, (w,u)) - (w, (v,u))

If we introduce the differential operators

Dl(f ) = (v, f), D2(f ) = (w, f)

then the members which can contain the second derivatives can be

brought together in the form

(DID 2 - D2DI) u

Such a combination of two linear different__al operators never

contains two derivatives. If for example

DI = 6 D2 _lk_-z_k k

• -- +_ _k6'_' ?then D1D_-- /(___,.. _lt_ 6x, 6x, '
kl kl

_'_

._ , _2 + _'_1_ 6& iDzDI ----_'_J'e"?X,dx, _ _-xk32,"
• kl kl

Therefore

_',.- ",_,l.,_,,, _._,11,9D,D 2-- D..D, --'7" _"_ 'k'j'_-x-"-- _l*_xi dz,

is also an operator which contains only first derivatives. It

follows that in (2) absolutely no members with the second

derivatives of u can enter, and since the same must apply for v and

w, then the entire expression must disappear identically. Equation

_ (2) is the so-called Jacobi identify.

II
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As the result of (i) it is possible to give the canonical

motion equations [c__f.No. 2 (9)]

L= (3)

in the form p,= (p,.H), 0,= (q,.H)

(4)

which is used in quantum mechanics in an obvious transcription.

If one considers (3) then one sees further that for every

integral F(q, p) -- a of motion which does not contain t explicitly

(F, H) = 0 (5)

This statment means, namely, only that the gradient of the

hypersurface F_q, p) = a in the 2f-dimensional pq-space on the

phase path element _H:. dq_ = _kdt = ,,1,_dt

dp_ pkdt = OHdt= --_q;

stands vertical. The element thus lies entirely in the surface.

.,

:, Finally we will derive still another unusual and iu,portant

principle from Poisson which, however, was first recognized by

_" Jacobi for its complete significance. He made it possible in a

:, few cases to find new integrals of the mechanical equations. He

said: If F - const, and G = const, are two time - independent

integrals ofthe canonical equations (3), then their Poisson

bracket expression ._{p__F OG _F o_

.:. (6)
,.y

is also an integral.
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The proof follows directly from (2) if one remembers that

according to (5)

(H, F) = 0 and (H, G) = 0.

It follows that

(H, (F, G)) --0. (7)

that is, also (F, G) = const, is an integral of the canonical

equations.

Naturally through this process one does Dot always get new

integrals since there is only a limited number of them, but one

the other hand, one gets quite often only a trivial one or one

which is a function of the two first F, G.

Also for the Lagrange brackets there is an analog co theorum

(6). If we use the already-mentioned theorum, which we will

prove later, that the coordinate change of a mechanical system

in the course of its motion can be regarded as the development of
.J

a canonical transformation, then one receives from the invariance

of the brackets the theorum of Lagrange. It says that for any

two-dimenslonal solution grouping

qj = qj(a, b, t), pj = pj(a, b, t)

of the canonical equations where therefore a and b are arbitrary

integration constants, for all times, that is, along the entire

mechanical path the corresponding Lagrange brackets are

[a, b] = const. (8)
-t

_ of the canonical equations where therefore a and b are arbitrary,2

!
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All above theorums can be generalized easily to systems,

vi____zintegrals which contain time explicitly by regarding accord-

_.ngto No. 4 time also as a canonical variable. As definition

for the Poisson brackets, which we now write with braces to

distinguish them, one now has

_'uiv 8u _v
{.. v} = (u,v) - ,t _9 + cw _-i

(u _v 8u _v

= (", _)+ _, _ - _-_ _," (9)

Correspondingly one can also extend the Lagrange brackets. The

considerations of this No. and of No. 6 can then be literal]y

transfered, only that instead of H we must write H - W viz H +

Form (4) of the canonical equations therefore now is

J_, = k,, (H -- W)}= _(_Z._-._)Y! _n8p,

}=1 t,(H--W)} =i, I (10)

w=(w. wl)= = l
From them it follows for arbitrary functions_;(pk, qk, W, t)

•"_ L_ qk--__;;/,,)+ _T+ gz_I_'=-={F,(/./-V0}. (lI)
k \v _U'

Each integral of the motion equations fulfills thus the condition

analogous to (5) {r,(S-.W)),,.,0,

(12)

which for integrals independent'of W reduces to

aF
(F,10+ aT "o (!3)

The Poisson theorum says now that with F - const, and G - eonst.

also _,
V, q - k_. +

(14)
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is an integral of the canonical equations (I0). From equation

(14) there follows a simple form (6) if only F and G are both

independent of _. The limitation to time-independent intejrals

is therefore not essential for (6).

8. C_Qntinuous transformation groups. The question as to

the significance which the integrals of the canonical equations

have for the problem of variation, can be treated in a very

elegant manner with the help of the theory of transformation

groups. On this subject we must state in advance a few theorums.

We change the mechanical system of a transformation to the

,1,),
eo

OL= Q_(Pt. , ,',) = q, -r_,_, 't, u't. qt).
n,=l

(l)

This transformation thus contains stil! another parameter according

to which it can be developed in a power series and changes for

- 0 into the identical transformation. If _ is very small,

chen we have a transfo1_atior in the vicinity of the identical.

One calls it then an infinitesimal transformation. For every

value cf x we have a definite transformation. Through (i),

therefore, a whole set of transformations is determined.

, 1)Here it makes no difference whether or not one takes the

: Pk, qk or the Pk' Qk as the original variables. For ):.he sake
of convenience In No. 9 we use the above form which agrees with

_._ the solution of a transformation Pk " Pk (P, O), qk " qk (P, Q)"

1969028902-034
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We want to require of these transformations first that they

form a set, that is, that two of the transformations with any

values 0<I, _2 stated one after the other, again produce a

transformation of the set. Lie I) has shown that the linear

members of the development (i), which we will designate with

_k, _ k' on the basis of this requirement determine completely

all following memberq also, and thus alone are characteristic of

the transformation. To a set of such members belong therefore

only one group. A proof of this would take us too far afield.

We limit ourselves to listing the transformations, and thus to

showing how one obtains the higher members from those of the first

order.

One form with the help of _ k, _ k the following dif-

ferential operator: O d

(2)

which one designates as generating symbol of the set. With

_ _ k' I k thus also D is given. One can define in three

.- different ways the transformations forming the set, which

naturally lead to identical results.

a) One forms the series

Pi = _k] - P, + 0_Dp, n- yD'p, + .... /_h,
n=0

qt ,,=[q,,]-- q,, + _oq,, + TO'q, + .... /_f,;
It:O

:_,_ ")b. Lie, Theorie der Transformationsgruppen, Bd. I, S.
_ 51 ff., Leipzig 1888.

I
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whereby the Dn are operators which arise through n applications

of D. For the sake of abbreviation we introduce the symbol

LF, - \-'"_ D-F (4)
n O

The series (5) are therefore only definable through differentia-

tion and multiplication with the help of _k' _k, as we can

easily show, even for sufficiently small 0_ convergent. For an

arbitrary function F( Pk' qk ) it is true also that

F(P k, Qk ) = F([Pk], [qk ]) = [F(Pk, qk)]. (5)

From the representation of (3) one can also see that the general

transformation (i) can be built up by continuous repetition of

the linear (infinitesimal) transformation

Pk = Pk +_ _k, Qk = qk +_k

(b) One forms the partial differential equation for the

funccion F of 2f + i variables Pk, qk'

and looks for thos integrals F(Pk, qk' O_ ) which for 0_ = 0

_ change themselves into the variables Pk' qk" Then the integrals

_ designated thus 2f Pk( _ , PI' ql ) Qk (4 , PI' ql ) are exactly

the desired transformation functions. That this definition

agrees with the first can be seen from the definition (4) accord-

ing to which for every function [F] it follows that

oo

_.=0

._. = D,+I F
•_qq.,, s=O

_5
%

i

_ -_ --_'_'__ IIII IIIIIIII iii - i i_L__. I I I"J.-_ '...................... IIIIIJ III II II IIIII IIII11111111
I
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Every function [F] satisfies by itself the differential equation

(6). Therefore the functions Pk (Pl, ql ), Qk (Pl, ql ) defined in

both ways must agree also for _ = 0 which clearly defines them

together with differential equation (6).

(c) The functions descrfbing the transformation are also

the solutions of the system of 2f ordinary differential equatiens

dPk
--- = _-_k(P_,Q_),

dQ, (7)
d_- = qk(P,, Qt),

which for = 0 assume the values Pk' qk" Here on the right side

the new variables are to be thought of as being introduced by

(3) while the old variables appear as integration constants oR

system (7). That this definition agrees also with the first

and thus agrees also with the second can be recognized with the

help of the series development (3) and definitions (2), (4) and

(5); then one has one after the other, for example

dP_d_- = = [D p_] = [p_]

= _h([Pz],[q_])= P_(el,Ql).

The relationship between the various transformations of the

group is likewise a very simple one as can be shown with the

help of presentation (2). If namely fl' f2 .... ff are

solutions of a linear homogeneous partial differential equation

such as (6), then it is obviously also an arbitrary function

F (fl .... ff)" Since now, for example, [pk ] _ = _ 1 is a

solution of (6), then it is also ---[[Pk]0_l]°_= _ 2, and
i

•_ since [Pk]o is the identical transformation then

.i
!
!

mtmm .......

I
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= [pk]_2 . This property of _ i = 0 to become equal[Pk ]o 0().

to [pk]_2 has also the solution [pk]_l +_2, but since there is

only one sblution of the partial differential equation which for

i = 0 is equal to [pk]0_ , then

that is, the transformations with the parameter _ 1 and 0(,2

introduced one after the other, produce the transformation with

the parameter 0( 1 + 0_2" With this we have also demonstrated that

our transformations really form a set.

If one considers now a function f(Pk, Qk) and appl{es to it

transformation (3), then it goes over into

1 (P_,O_)= [l(Pk, q_)]= ;;!D"t (Pk,qk).
n=O

If here f goes over into itself, then one calls a function of

this type an invariant of the group. For this obviously to be

necessary and sufficient

Df (Pk, qk ) = 0

becomes identical in the Pk' qk since then all higher members of

the exponent development disappear and only the zero member,

i.e. the unity operator remains. The invariants of the group

satisfy therefore the partial differential equation

=.Z,,,-& o. (8)k k

9. The meaning of the integrals of the canonical equations.

After this preparatory discussion let us return to mechanics and

I _ll ...... L IIIL _ _ _ II • ,, - , II1_IIIIIllll Ill
I
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and ask when is such a transformation group canonical, and there-

fore contains only canonical transformations. We will limit

ourselves for the sake of simplicity to the case that the inde-

pendent variable t does not appear in the Hamiltonian function of

the system. Otherwise as in No. 4, t would have to be treated

likewise as canonical variable and also be transformed.

The condition for canonical transformations was [equation

(12), No. 3] _#k_=ZPb_Q_+_,

(l)

where operation was defined by 8/(#_q_)=_'_Pk+_'_7_qk
k _ k

If we introduce into this the formulas (3) of No. 8, then by

taking equation (2) of No. 8 into consideration

,. ._._,_¢_ , (21 (2)

where _ is also added as power
series in

In order that relationship (2) is f_°ifilled identically, all

powers of 1_ must have equal coefficients on both sides. There-,

fore at first _0 - 0. The linear members produce

! identical in the Pk' qk" If one has chosen _k' _ k so that
);
_. this relationship i8 fulfilled, then the higher powers are
?-

'i produced through the appropriate repeated application of operator
"i

. _ ilili..... - . I I ' II L 1_ II1"! I _ r -- I

I
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D to this first relationship, and one sees very easily that

equation (2) is generally fulfilled if one places

'_= _ qq + 2!D qq -i"31/)2tbx+ ...

If we now instead of @ 1 introduce the function

k

k

then (3) changes into the condition

(4)

It is then and only then identically fulfilled in the Pk' qk' if

L'I' , f'l'

]3t= oq_ ""- "'-c p,

(Pk' is itself to be chosen absolutely arbitrarily andqk )

one thus obtains the most general group of canonical transforma-

tions by means of the operators

",Ve'_'e__"Cf_

whereby according to equation (2) and (3) of No. 8 the trans-

formation formulae themselves are given by

f ,It _2 _'1'
Pc = Pt -- o_?-q- + -2( D _- ....

6'I' a ' D 6"1' .
Q, = q, = __p; + _T _p; +"" (6)

These transformation functions are according to the results of

No. 9 simultaneously the solutions of the partial differential

_F DF,equation _ =

(7)

which for _ = 0 change relatively in Pk' qk" Furthermore they

< are those solutions of the system of differential equations

_'_ dPj _,'I' _Q_ _

| - (s)

II -
II jl roll, i

] 969028902-040



- 40 -

which for O_ = 0 assume the values qk' Pk" The canonical groups

depend in agreement with No. 3 on one single arbitrary function,

namely _, which is designated as the generating function of the

group.

By means of the canonical group in general naturally the

Hamiltonian function of the mechanical problem changes into

another function. We now ask--that is the essential point of the

following investigation--if there are groups which convert the

problem into themselves, that s with respect to which H is

invariant. For this according to equ_r :7,(8) of No. 8 it is

necessary that H satisfies the partial differential equation

_ i't' _tt ffl ' /tl

I2H:-:---(<,/,_7,--_" p, i,l,) ('/',H)=0 (9)/.

where (X_/, H) signifies the Poisson bracket symbol (see No. 6).

If we therefore want to designate for a previously given

Hamiltonian function H the transformation groups with respect to

which it is invariant, then we must select the respective functions

which satisfy partial equation (9). These ace then the

generating functions of the group. There are thus as many

canonical transformations of the problem within itself, as there

are integrals of this differential equation.

According to No. 7 (5) equation (9) means that _ is an

integral of the motion equatlons. We have thus reached the

fundamental statement that the generating functions of those

canonical transformation groups_ which let H be invariant I are

cq

$

_ l|i I - ...... n
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integrals of the canonical equations. Inversely it is obvious

that each one of these integrals generates a group of canonical

transformations of the prob_.em within themselves. The knowledge

of the transformation groups of the system is therefore equivalent

to the knowledge of the integrals.

As one gathers from (8) the formulae which produce a trans-

formation group have the form of canonical equations. These

therefore can be interpreted inversely also as a canonical

transformation, with which t plays the role of the parameter

and H itself forms the generating function. This trans-

formation adjoins to every value system pk(0! qk(0) at a def..lite

n(t) k(t)time to (t) that value system _k ' q in which the mechanical

system would find itself through the course of motion from the

C! to =an
conceive of the course of motion of the mechanical system as the

development of a canonical transformation. This statement we

_: have used already in Nos. 5 and 7.

: The simplest special case is that of the cyclical coordinates

(of. Chap. 2, No. ii). If for example q is cyclic and therefore

does not appear in the Hamiltonian function, then is a trans-

formation of the system in and of itself and

p s const.

:.:" the corresponding integral of the canonical equations.

,'._: With the help of the general theory of transformation groups

'" _ _ III -- ' ........... _ " I _
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one sees immediately the significance of the ten general integrals

of the systems of free mass points I), for these systems are the

displacements, Galileo transformations and turning transformations

of the system within itself, which do not change the energy. To

them correspond the principles of the center of gravity, conser-

vation of linear and angular momentum. To the conservation of

energy correspond the transformation T = t + const., which also

transfers the system within itself but contains time in addition.

If, for example Xn, Yn, z are the x, y, z coordinates ofn

the n-th mass point, then the first group of the transformations

are
x,. ----X,.+ :,.. p,,.= P,,..
Y"= Y"' Pu. = Pu.'
z,,= Z,. p. = P,.;

It means a simple displacement of the system in the x-direction.

The corresponding symbol of the group is according to (5) and (6)

: The corresponding integral therefore is _'p,._=konst.
II

'i

This is the first center of gravity integral however. Likewise

one finds the two others x_py. = konst., %_'#,. = konst.
M /t

l)Siehe Kap. 7, Zlff. 24 ds. Bd. des Handb. Man bgl. auch:
F. gngel, Uber die zehn allegemeinen Integrale der klassischen

'" Mechanlk. G6ttinger Nachr, 1916 u. 1917.

l.

I ]i UlIIII_ _ ii ii HI i i -i _ |
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The second group of the center of gravity integrals

2",._x,, = lx_Sp_,,-!-k,,,_.t.

contains time explicitely. To treat them therefore the previous

considerations about transforn:ations, which contain time, would

have to be expanded.

To the angular momentun conservation laws belong the group

of rotations .\'. = x. cos._ + y,, sin_,

Y_t = --X. sino_-t- Y. COStX,

Pz. ---- p.. cos _x+ py. sin _,

Pu. = --P*. sina + pv.cos_.

The corresponding symbol is as can be demonstrated easily by

__( _ _ _ a)expansion according to D = Y-_xf--x,_. + P_._-_,.--P,-p_,. •M

To this belongs the integral _=X_(pv.x .- p,.y.)=konst.,
n

and this is the conservation of angular momentun about the z-

:. axis. Similar ones are applicable for the x and y axis.
%,

! i0. Reduction of the order with the help of known integrals.
9

;: The canonical transformations make it possible for us to utilize

any previous knowledge we might have of integrals of the canonical

equations and thus to reduce the order of the differential equation

system. In very many cases there exist, for example, the etiergy

4- integral corresponding to conservation of energy and the center of

_i gravity and surface integrals corresponding to conservation of

angular momentum. In the problem of the three bodies with their

7 _

I
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help one reduces fron, the 18th to the 6th order I) . In general

one can with the help of the _,_own integral eliminate a eanoniual

pair and therefore each time reduce the number of variables by

tWO.

Let therefore an integral

G (Pk' qk ) = const. = g

be knower. The task is therefore transformation to reach a

suitable new variable so that a pair, for example PI' QI' drops

out of the Hamiltonian integral "
f _.'(P,(J,. -- K)dt = Extn.mum
l,

This is accomplished obviously when we are successful in making

the new variable

P1 = G(Pk' qk ) = g (1)

Then PI becomes constant; thus PI = 0 is an integral of the

transformation problem; and because

QI and K must then drop out while r I now only plays the role of

a constant parameter. The variables QI' PI (i - 2, .... f)

form thus by themselves a canonical system with the Hamiltonian

f,_c tion K.

So that (I) is now true, the transformation function V,

which should generate the desired canonical transformation,

according to No. 3, equation (5) must satisfy the condition

_ 1)Vgl. Kap. 7, Ziff. 24, 27 und 28 ds. Bd. ds. Randb.

!

M
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This is a partial differential equation which possesses correspond-

ing integrals with which the possibility of reduction is shown.

It can be carried out without really looking for a solution to

the partial differential equation. If one has namely first

determined V according to (2), then with the corresponding

canonical transformation, Q1 falls out of K by itself. One can

therefore give Q1 for the purpose of the transformation any

arbitrary value, especially the value zero, and must nevertheless

sti_l come to the correct function K. Therefore one does not

need to know the dependency of function V on QI; moreover it is

sufficient to have its value V(qk, 0, Q2' .... Qf) for QI = 0.

This is, however, entirely arbitrary, for according to tile

existence principle for partial differential equations, one can

always give an integral of (2) which for QI = 0 changes into an

arbitrary given function V(qk, Q2' .... Qf)"

We can therefore proceed as follows. We take an arbitrary

(except for one limitation which we will give soon) function

V(qr, Q2' .... Qf) of the 2f - I variables ql' .... qf' Q2' .... Qf

and possibly even of t and express first the Pk by means of the

equation
_v

"a_. = P._,.... _' g'.... Q_ (3)

as functions of qk and Qk" These values we insert into the side

condit_en (1) so that we get

_ I _ -- -- "- Ul
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/i" ilG q, ..... 71, ; v*' ' ','." " */" " "" "":.... 'J'_---_= P_" (4)
V

This equation we take in place of PI = Q which according to the

above boundary condition is pelmissible. We now set

P, = - _?- == l',(q, .... '#, Q._.... (Jl), ([ = 2.... !) (5)

then (3), (4), and (5) are together the desired transformation

formulae for p, q into P, Q. V thereby undergoes only the

limitation that the equations (3) and (4) must be solvable for

qk" The new Hamiitonian function then is the usual

#I"

K = H _ -_i

and does not contain the variable QI' however P1 = g is to be

considered as the constant parameter.

The simplest special case is again the cyclic coordinates.

If for example, q! is cyclic and therefore does not appear in L

and thus also not in H, but it does in ql vi___zPl' then
OL

0-ql = Pl '= konst. = c

if the integral and the canonical problem already has the form

we are seeking. We therefore can simply suppress Pl and ql so

that we as variation problem get
B

I'{_l_tq --K(pl, ql, c)} dt = Extremum, (l----2 .... D

where H(Pl, PL' qL) = K(c, PL' gL )" The whole procedure of tbis

section (Nrl) means that one with the help of an integral can

make a variable into a cyclic one.

: ii. The relationship between the various integral principles.

The Just discussed ideas make it possible for us to 9:plain the
i
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relationship between the various integral principles in a very

instructive manner by evaluating the energy equator as a side condition.

These concepts which are closely related to those of the previous

chapter are inserted and discussed here since only now do we have

the necessary mathematical apparatus available.

First, we must return from the canonical variation problem

to the Hamiltonian. We assume, thereby, that we would have elim-

inated in the former, the side conditions by the introduction of

cyclical variables, as in the previous no. and apply now the Legendre

transformation. No. 2 equator (8b), In this manner, the new

Lagrange function--let ql be cyclical--becomes

L* "_. _A"
= _..,pt-_o-' - I'¢. (l = 2 .... /)

g

On the other hand

_};- -- H =__t_ PleK +cql--K"
; l

and therefore,

L* = L - cql,

and the variation problem contains the form:

L(ql,ql) - cq_ dt = gxtrenum. (I)

In this the quantity ql' which does not even appear, in ccntrast

to the other coordinates, is i_ot subjected to any limiting con-

e
ditions and ql, therefore, is a completely arbitrary function.

One can thus think of the problem as if no longer contained an

unknown ql w'.ose derivative does not occur and whose corresponding

,:, Lagrange equation, therefore, is

7 aL

-i' i_-_-c=O (2)
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while the other Lagrange equations are not cha_ged and thus give

the same extreme-values. Since (2) must always be satisfied, there-

fore, one can require this relationship as a side condition and

then treat it as in No. 2. Obviously, the result is that (I) is

equivalent to the relative minimal principle

(3)

with equation (2) as a side condition.

Finally, one can eliminate now, ql entirely by solving (2)

for ql and placing it in (I). Then we actually obtain, again, a

simple minimal principle

B

IF(c, PL,qt)dl = Extremum, (l = 2,... D
a (3a)

only with one less desired function.

One can, as has already been said, use these ideas in order

; to go from the Hamiltonian principle to the other integral prin-

ciple by applying them to the energy laws. This procedure, how-

_ ever, is only valid for conservative systems. In this case t

_ itself, is cyclical since it does not appear in the kinetic potential.

In order to be able to apply the above method, we must further in-

troduce (no. 4) as before, a parameter which places t equal to the

other variables. Let us assume all values as functions of axt

auxilliary parameter _:

_i:i_ t = t ("¢') : qk " qk ('_)'

:_ so that t(_l) = tl, t(_2) - t2 and designate the derivative
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according to _ by a dash, then we have

q_ = qk

and thus the kinetic energy T, which we presuppose to be a homo-

quadratic function of qkgenous

T(qk) = 2T(q •

The Hamiltonian principle, therefore changes to

{l.T(q_) - U(qk)t' I d_ = Extremum

whereby as alimit_ng condition, it is required that for _-= _i'

"(i) and t (I)
viz. _ = 7 2 the qk and t change to definite values qk

viz. qk 2),- t(2) . Now t is no longer distinguished and we can,

therefore, apply the previous concepts. Thus t takes the place

of ql and T takes the place of t while:

6= j
_T-- Ut"

An integral of this _ariation problem becomes

4L

_-p--- ?_T(_) -- U = -E, (4)

therefore of course the energy integral. With its help one

obtains as equivalent with the Hamiltonian principle the form (i)

which here is _=

t's

(5)

where thus the limiting value of t is no longer designated. If

' we again inversely introduce to as variable, then we get°'

J

i <.>)

v
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This is a new principle of mechanics equivalent to the Hamiltonian

which is still unknown in the literature and which should be called

the Hilbert principle. It says:

A POINT SYSTEM MOVES SO THAT WITH ALL MOTIONS WHICH WITH

ANY PASSAGE OF TIME LEAD FROM THE STARTING POINT A WITH THE

(I) TO THE END POINT B WITH T_E COORDINATES
COORDINATES qk = qk

(2) THE ACTUALLY OCCURING MOTION MAKES THE INTEGRAL (6)qk = qk '

AN EXTREME-VALUE WHERE E IS THE VALUE OF THE TOTAL ENERGY GIVEN

AT THE STARTING POINT.

From the principle iollows naturally the energy law since it

does not appeal explicitly in the integrand. It does not require

it however as side condition and it stands correspondingly in the

middle between the Hamiltonian principle and the principle of

least effect.

Since E is the constant, for (6) one can write
B

f(T--U)dt+ E (t_--tl)= Extremum,
A

where t 2 - tI is the still unknown time which the system needs for

its path. One arrives back at the Hamiltonian principle when one

gives the time t2 - tI to the motion.

To the principle of least effect we arrive by adding the

energy law T + U = E which follows from (6) as a side condition.

One thus comes to form (3) which because of (4) assumes the form
J

_2[rd: = Extremum while r + U -- E
&

therefore exactly the principle of least effect (see Chap. 2, No. 25).

.!
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The extreme-value is to be sought among all functions which in

any time at all lead from starting to end point.

Finally one can still eliminate t entirely and therefore

obtain form (3a). To do this one again uses the pramater pre-

sentation properly. This is procedure which l_d in Chapter 2,

No. 20 to th_ Jacobi principle which can therefore find a place

in these discussions.

12. The Hamilton-Jacobi partial differential equation.

We turn now to the integration theory of canonical motion

equations H = H(qk,p;,l), qk--_H , _H

(l)

We have come across parts of these several times already (in

No. 2, 7, 9, and I0), but the most important thing is still lacking:

a systematic procedure, wbich will be described in the following.

In this we will make extensive use of the canonical transformations.

According to No. 3(5) the new Hamiltonian function with a

caaonical transformation of problem (i) becomes

oF
K=H+Ff .

We ask if it is possible through a suitable choice of function

V to cause the new Hamiltonian fnnction K of the system to disappear.

Then in a certain respect the mechanical problem is transformed

into an equilibrium problem. The function which does this we

will designate with R to distinguish it from other generators.
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Now R is a function ot qk' Qk and t and it becomes

_1¢ p_ = dR K = H + 6,7 (2)P_-_ i q,' e Q,' -_t-

The condition which R must fulfill so that K disappears is

c, Q_, t) + H (_/k,Pk, t) = 0therefore it R_qk.,

or according to (2) _R ( _P t)=O-_t + H qk, _:-_-,

(3)

This is a partial differentia] equation of the first order for

R which was discovered first by Hamilton. It arises by replacing

in the Hamiltonian function H the Pk by the derivatives of R

according to the corresponding 'K" Since (3) for all arbitrary

values of Qk must stand, then they play the role of integration

constants.

The significance of th= partial differentia] equation (3)

lies in the following. Let us assume we had found an integral

of (3) containing f arbitrary constants

R (q, . . . qt, oq , . . . _xt,t) = 0

therefore a function which for all values of the integration

constants satisfied the differential equation. This is naturally

not the most general solution of the partial differential equation

which would have to contain certainly an arbitrary function but

a so-called complete integral. We can then introduce these

constants _k as new variables since R should be a function of

the old and new position parameters. The transformation fo-mulae
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(5) of No. 3 produce in this case
&R

p_= _9,,
6R

Pk - - - + fl_,
_ (4)

K=0.

and the new canonical equations become as a result of the third

line simply dOk d_ dP_ d[_dt" =-dt =0' dt = dt =0"

Therefore both the _k and the_k are constant quantities for

the mechanical system to whi_-b -bitrary values can be given.

They are called the canonically conjugated constants. With this

the integration of the differential equations of the mechanical

problem is completely carried out; this is because the equatLons

(4) produc . the original coordinates of the system as functions

of time and of the 2f arbitrary constants _ k and k"

The integration of the canonical equations is therefore

reduced to the discovery of an integral of the partial differen-

tial equation (3) which contains f constants. At first not much

seems to be gained by this since partial differential equations

as a rule are more difficult to handle than usual ones. But in

mechanics it has been shown that for many important cases the

partial differential equation assumes relatively simple forms so

that their introduction actually means a big step forward.

Only one single step will be developed here. If the

Hamiltonian function H does not contain tim_ explicitly then the

differential equation (3) can be somewhat simplified. If we for
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R make the following condition:

R = S(qk,_l...._/)--all' (5)

where S uo loager depends on t, and if we enter this condition

in (3), then a, H(q_ :s,= ' 771_,= '_

(6)

whereby time ti is eliminated. O/ 1 thereby in general becomes

the energy constant and as such is designated by W. If we now

have found an integral S of the portial equation (b) which aside

from CK 1 still depends on f - 1 further independent constants,

then the solutions of the motion equations are

_s t-fl_ _:s (I=2 .... /):s fl,= ,:_, - t,_," (7)/,,,= :-_,

The equations (3) and (b) are the simplest forms of the

Hamiltonian partial differential equation. Formulas (4) and (7)

contain the solutions of the motion problem in the obvious form.

But from a practical point of view many variations of the des-

cribed procedure are used. Thus one in place of (3) can also

require that the new Hamiltonian function K, instead of disappear-

ing, becomes an arbitrary time function f;,t). One has to take

as generator of the canonical transformation the solution of the

diffe,.'entialequation _T_+H (qJ,_) -Ig)

(8)

R to then related to T through
R- r ._ / l(Od#

(9)

For example, one can require that
t I(0 - I_,_.. _,
¢

.,l

|
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(This is obvious when it is a question o_ a small disturbance

coming from outside of an otherwise closed system which without

it contains a constant amount of energy.) For this from equations

(8) and (9) we get

/T /T)/, + H(q . (Sa)

R---_T- a,t. (9a)

If especially H does r,ot depend explicitl) on t, then one can

assume T to be independent of t and thus return to (6) vi___zz(5).

Furthermore in the case of a closed system it is for example

simplest but not always most practical to choose the energy

constant itself as one of the integration constants ot the

complete integral S. From normalization reasons in the theory of

stipulated periodical systems (c__f.Chapter 4) and their application,_

in quantum theory other integration constants are chosen--we

will call them Jk--in which the new Hemiltonian function is

written
=1= K (l_... J/)

(10)

One can however easily transform with a generator of the form

V- _ o,k(l_...l_b

the variables of _ k,_ k to the new constants Jk and the

variables conjugated canonically with them. The latter are

because of (19) and Wk = _Jk = const, linear functions of time.

In all cases for the drawing up of the Ham£1tonian partial

: differential equation the view point remains standing thac one

t
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c_ange to new variables of which a set are motion constants of

which conjugated set therefore do not occur in K. With other

words: one looks for a generator of a canonical transformation

in cyclical variables to the discovery of which the Hamiltonian

partial differential equation leads. Let it be mentioned

parenthetically that form (i) of the Hamilton'an differential

equatio_i corresponds formally entirely to form (6) when cne

according to No. 4 treats time likewise as a canonical variable.

13. The simplest cases of the integration. The solution

to the mo_ion problem No. 12 (I) is now reduced to the integration

of the partial differential equation No. 12 (3) or (6). We mus_

look for a complete integral of the same provided with f inte-

gration constants O_ k. A procedure which always leads to this

goal can not be given. Let us discuss here only two simple

cases of the treatment ,,fNo. 12.

The first case that permits a simple integration is before

us when all variables with the exception of one single one (9)

are cyclic• One knows then the f - J first integrals

as

#, -_. = a, (k --,2.... +9

and finds
!.

$ "_._f_+ $,(q,,_,,o_,...._.

The differential equation No. 12 (6) can be reduced, since H is
i'

+ Independent of the cyclic: variables q2 .... qf, to an ordinary

:+ H('_q,q,,++,.... +t,)--W -- ,..

Ig '
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from which then SI can be obtaired by squaring.

The other case that permits a _imple integration occurs when

the differential rquation No. 12 (6) can be separated into the

variables Pk' qk" This means that with the problem
S ='_S_(q_,oh,.. _/)

I,"

£ S _S, (qi)

that is, when S is given as the sum of functiG_.owhich individually

depend only on one coordinate qk-- the differential equation

No. 12 (6) separates into f different differential equations for

the Sk. For this it is necessary that already within the

equation H(p_ .... Pt, q, .... qt) = W

each momentum Pk can be conceived of =s functioz',of the pertinent

coordinates qk above and therefore this equation separates into

f separate ones Hh(F,,q_)= A,(_....%)

The f separate differential equations for the Sk then are
H ql,)=,At.

They make possible the calculation of the Sk by mere squaring.

The condition that H can be separated into the used coordinates

can be written according to Levi-Ciwlta 1)

io oH 0. [
o;! OK OH !__0 ffir '

I_, _ P_FP,_,i li_ *.

l OR SiR _H ,

1)T. Levi-Civita, Math. Ann. Bd. 59, S. 383. 1904; F. A.
Dall'Acqua, ebenda Bd. 66, S. 398. 1908; H. Kneqer, ebenda Bd.
_4, S. 277. 1921.

?
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Usually the separability is to be looked for in function H.

It is dependent upon the coordinate system and generally is in

need of the introduction of special separation coordinates in

order to accomplish the desired separation. In many cases the

separation system distinguished physically by the boundaries of

the path region. However, this is not always sol); indeed,

2)
Burgers has shown that with the motion of an electrically

charged oscillator in the magnetic field, the separation system

can be introduced only by a tangential transformation.

Examples for the integration by separation are among others

each central motion [as can be seen from No. 2 (15)], and the

two-center problem which, as Jacobi has shown, can be separated

into elliptical coordinates with the two fixed centers as foc_ .3)

Weinacht succeeded also for the case of a single mass point in

a conservative force field in finding all systems which _=an be

separated by point transformation4_ The important result is that

the most general position coordinates coming into consideration

for the separation of the variables in this case are those of

the ellipsoid with three axies (including their degenerate forms).

Also the related functions for the potential energy can be

I)E. Fues, ZS. f. Phys. Bd. 34, S. 788. 1925.

2)j. M. Burgers, Her Atoommodel van Rutherford-Bohr, Leiden
1918.

3)T." N. Hamilton in his writings used the term "Characteristic
• _ Function" where Nordheim svd Fues use "Elkonal."i

t 4)j. Weinacht, Math. Ann. Bd. 91, S. 279. 1924.
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listed and are obvious generalizltions of the above mentioned

cases. In addition, each small oscillation of an arbitrarily

constructed system around a stable point of equilibrium makes

possible a separation according to the method ot separate

oscillations. For the motion of a rigid body the cases of the

mobt general force-free gyroscope (possibly also with built-in

fly-wheel) and that of the symmetrical gyroscope in a gravitational

field are separable 4) .

14. The independency law of the calculus of variation;

Characteristic Function. At the close of the chapter on Hamilton-

Jacobi mechanics we still want to try to give an insight into the

profound thought processes which led the creators of this theory

and ._._ichrecently in the %-_rks of de Broglie, Schr6"dinger and

others have brought about a fundamental broadening of mechanics.

In order to understand this real kernel of the Hamilton°Jacobi

theory it is useful to mention again a few theorems of the

calculus of variations. For this we start with form (4) of No. 2

of the variation problem

J L + _k,tf*-- kk) dt = Extremum (1)

The integral here has the simple form ..
t,

d_j

It

,__th

l)vgl. G. Kolossoff, Math. Ann. Bd. 60, S. 232. 1905; F.

Reiche, Phys. ZS. Bd. 19, S. 394. 1918; P. S. Epstein, Verb. d.
Phys. Ges. Bd. 17, S. 398. 1916; Phys. ZS. Bd. 20, S. 289. 1919;

H. A. Kramers, ZS. f. Phys. Bd. 3, S. 343. 1923.
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J

_laL _L
with A = L- _ _k_kk. Bk= _k_"k

The integrand is thus a linear expression in the derivatives

qk of qk" In addition the functions kh which are to vary

independently of the qk appear, but not theic derivatives. This

form reminds one of the complete derivative

of a function _ according to time. It suggests the question as

to whether or not it is poss_bl_ with a special choice of kk as

functions of qk and t to make the integral (2) indepedent of the

path in the qt-space so that it keeps the same value for all

possible functions qk(t) and therefore from a function of a

function in the sense of th_ calculus of variation it degenerates

into a pure position function ot integration limits. The values

of the _ then form a kind of proof of th= qt-space to the extent

that to each point is given a definite value of the kk. One

calls such a proof a field and the question is whether or not

there are proofs in which the integral (2) becomes independent

of the path. Necessary and sufficient for this is that Bk and A

appear as partial derivatives of the function (qk' t) _

a ej-Tg..

Then the integral i

tt tt

becomes a pure function of the integration limits in the qt-space.
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For this A and Bk must fulfill the conditions o£ integratibility
¢'3A ¢_Bk _Bk _Bl

oq, -dr ' cq_ _q_

The general answer how one must choose the k-field so that

these conditions will be satisfied is given by the independency

law of Hilbert:

The integral (2) becomes independent of the path when one

takes any system of intermediary integrals.

dqk
dt - _(q_, .._,t)

of the Lagrange differential equations:

[e]qk = 0 (3)

and for every point ql' ....qf, t then chooses the corresponding

qk"

We will prove this law here, only for systems with only one

single degree of freedom, that only one pair p, q viz. k. Then

there exists only one single condition of integratability, namely:

L

= (5)

If we differentiate, then we get as a condition for the independence

of the integra£ (I), a partial differential equation of the first

order for k(q, t)

or OL [_k kOk_ kfS_L_. (_L ¢L i

(6)

?
7
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which is called the partial differential equation adjoined to the

variation problem. This differential equation is now,--that is the

claim--satisfied then and only then, when k(q, t) is an intermediary

integral of the Lagrange differential equation

(2L f"L • _L _L

[L],-- ?,y _ + _0_._q + e-Oe7- e-q-= o (7)

If namely _ k(q, t) is such an integral of _,), that is, if

(7) is satisfied identically when one inserts for q, the general

solution

q = q(t,_ ) (8)

of the differential equation q = k(q, t), which still contains the

_k _k.
constant 0_ , then q = _i +-_q q,

is valid identically in t and _ . If we place this in (7),

6
and again write k for q, then one gets a relationship which form-

ally looks exactly like the adjoined partial differential equation

,e

_ (6), but at first represents an ordinary equation in t and O_ ,

which must be satisfied identically for all values of t and0_i

If one O_ with q by means of (8), then it must also be identically

true in t and q, that is, all intermediary integrals q = k(q, t)

of the Lagrange differential equation satisfy also the adjoined

partial differential equation.

If co_Iversely, k(q, t) is a solution of the adjoined partial

differential equation (b) and if q(t) satisfies the equation

- k(q, t), then we can insert :_l]_,+_!+_.+_ and arrive back

/
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with, if we again write _ for k, at the Lagrange differential equa-

tion 7 and thus our law is completely proven. For several degrees

of freedom then, the law can be generalized by taking it back to

this special case.

The solutions to a variation problem, that is the curves which

satisfy the Lagrange differential equations, are usually designated

as extreme-values. With the help of a set of extreme-values of

f parameters an independence field can always be produced. In

order to carry this out in the most general manner, that is, to

give to each value system ql'" "qf, t a value system kl...kf, and

thus to fulfill the condition of the independency integral, one

proceeds as follows. We choose entirely arbitrarily any function

F(qk, t) which placed equal to zero, produces an f-dimensional

hypersurface in the space of qk' t:

F(ql ,.... qf, t) = 0, (9)

and determine next the _ for all points of the surface from the

requirement that for them, the integrand of the independency integral

disappears. We accomplish this calculating the f values of _ from

the f equations (L 2 @L ' @L {L :"" _L @iv 6iv @iv /)p--r : n:
(to)

since then the integrand except for a negligible factor, becomes

equal tO _ _,--

i
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and thus indeed, disappears for the surface. Then from each point

of the surface, we let such a curve qk = qk(t) go out whose dir-

ection factors
qk are there exactly equal to the just determined

_, and in their further course, satisfy the Lagrange differential

equations (3). This is always possible since always at a given

point with given direction for an arbitrary differential equation

of second order, such an integral curve can be found. This simply

means that we take the integral curve which stands transversal to

the surface which condition is usually identical with an orthogonality

in the ordinary sense.

Since the sufrace F = 0 itself, is f-dimensional, we have dis-

ignated an f-parameter curve set which fills the f + 1-dimensional

q t-space _erywi,_re completely, since in general, aside from

occasional singular points, a curve goes through every space point.

_'. The values of the kk at a random point we determine simply from

the tangent direction of the extreme value going through it and

P

_ we set, therefore,

:' kk - _lk.

,_ This k-fleld according to the independency law, makes the integral

a pure place function.

the significance of the independency integral can now be

recognized as follows. We imagine to ourselves that in __he field

'," all transversal surfaces are drawn in, that is, all surfaces F =

,_: consant, which satisfy conditions (lO). The integral _ , reaching

=_ between any two points of such a surface, is obviously equal to
i

i
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qero. We now solve it further for the pa h which leads from the

starting point A of the actual motion to the end point B. Because

of the independency from the path, we can choose the latter as

appropriately as possible. We next go to the transversal surface

on which the starting point lies forewards to point C, to which

the extreme-value joins, which also goes through the end point B

and then on to this extreme-value. The first part AC gives no

sum to the integral. For the second part, CB everywhere the kk = qkB

J J •and are reduced to L(qk' qk' t)dt, since the qk -- kk(t) were
c

so designated that they satisfy the Lagrange differential equations.

J is therefore the extreme-value of the integral of the Hamiltonian

principle between the two transversal surfaces which go through

starting point and end point. Since I disappears for paths on

these surfaces, they are, _herefore also surfaces of constant

value difference of the Hamiltonian integral between corresponding

points, i.e. points which lie on the same extreme-value. The

quantity _ which for a given extreme-value field is a function

of the starting point and end point, has for many branches of mathe-

matics and physics, great importance and is usually called by the

name, characteristic function.

Naturally, there are many kinds of characteristic functions,

since they depend on au arbitrary function, namely the starting

surface F - O. Among all possible starting surfaces, there are

especially those which have degenerated into a point, namely the

starting point of the integration path. Also, from it one gets a
%
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field which covers the entire space by taking all extreme-values

which pass through it as generators of the field. The characteristic

function for a point which is reached from the startin 6 point in

thejcourse of the motion is thus obviously equal to the extreme-

value of the Hamiltonian integral itself, taken over the actual

path curve.

15. Application in mechanics; t_,e meaning of the Hamilton-

Jaeobl differential equation. For all possible characteristic

functions, a partial differential equation can be set up. From

definition (2) of No. 14 we see immediately that the derivatives

of _ are given by _J =L__ _L
k

_d_ _l. (1)
r_qk-- r_k_"

The right sides are still functions of the kk, that is, of the chosen

field. From these f + I relationships the f values of kk can be

"- eliminaLed and there remains over then a condition between the

derivatives of _ , that is, a partial differential equation. This

_ elimination can be carried out directly with the Legendre trans-

formation, therefore the transition to canonical coordinates We

:_ had set in (5) and (7), No. 2

_L' iL
h - -_.= _-(.

_OI.. .u- _:q.--L

and we received from (I) by eliminating the Pk

(2)

p

i
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as partla£ differential equation for the characteristic function.

This is however, the Hamilton-Jacobi differential equation (3) of

No. 12. ThrouKh this fundamental relationship, the s_icance

of the integral of the Hamilton-Jacobi differential equation, as a

value of the Hamiltonian integral between the transversal su_'faces

of the field is disclosed.

With the help of these findings, the main law of No. 12 can

be derived in a new manner. Let us suppo£'e that in differential

equation No. 14 (9) of the starting surface f parameters are intro-

duced so that we in all have an f-parameter set of surfaces of

which one is our initial surface. To every other surface of this

set there is likewise, an independency field determined by our

construction so that also have an f-parameter set of such fields.

This means we take for our definition of the field, a set of inter-

mediary integrals of the Lagrange equations which contains f

integration cons tants ,_..#_(q_,_,_,_.

To every value system of _K belongs then a .characteristic function

and the totality of these characteristic functions can be summed

up in a single function _(_ which depends on the f para,,_ters ._

in addition to the starting and end points:

With however, the derivatives accocdins to the paramet.ers _

must become pure location functions an4 we get, because of
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simply
_J _'L dr.

- _ (3)

The integrals on the right side disappear as we move along integral

curves since for these always qk = kk' that is, _ _/_ produce

functions of qk and t which are constant, themselves, on the integral

curve. They must, therefore, be placed equal to constants - _i'

_J _,
(4)

be integrals of the Lagrange differentia£ equations, which was to

be demonstrated.

By reversing this law, one also gets an important mechanical

theorum. If we know half of the integral of a mechanical system,

then the other half can be found by squaring. Indeed of f functions

_t(_k,q_,,, _,.... _h = o viz. _t(_, _. t, _, .... _/) = o

are known then by solving according to qk one can find these as

functions of qk' t and of the f first integration constants _ ,

hence also an f-parameter extreme-value field _=_,t,a_).

B

We form, therefore, according to our assumption

al-_a_- ua# (6) _!i.

a complete differential.

According to the principle Just proven, every mechanical

problem with one degree of freedom can be solved by squaring, _

for example, i£ it possesses the energy £ntegra£, and every problem {.
?

with two degrees o£ freedom when in addition to the energy integral
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one additional integral is known.

Also integral S of Hamilton-Jacobi partial differential

equation (6) of No. 12 integrated according to time has a slmple

significance for systems which do n_,t contain time explicitly. It

is namely the extreme-value of the integral of least action, there-

fore, the action function, and thus also of the integral of the

Jacobi principle identical with it for conservative systems. We

have, since we postulate the law of conservation of energy

2T=T--U+T+U=T--U+o_,,

where 0_ 2 xs the energy constant. Consequently, according to (5)

of No. 12 B
2fTdt =/(T-- U)dt + a_t= I +att = S;

(7)

i.e. S is related to the principle of least action in the Jacobi

form in the same way as _ to the Hamiltonian principle.

The concepts of this section show that the integration of a

partial differential equation of the Hamilton-Jacobi form, which

means no essential restrictionof generality, is equlvalent to the

integration of the corresponding can3nical equation. This is

nothing but the Jacobi integration method of the partial differential

equatlons of first order and the extreme-value curves of the Hamil-

tonlan prlnclple, thus the meohanical path cuz,_es, represent the

characteristics of the partial differential equation. Indeed when

the canonical equations are solved and thus all extreme-values are

found, for every function F(qk, t) - 0 one can find a solution of

i'_ the partial different£a£ equation which for t = tl, qk " q(k1)
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change over to F. Actuatly one proceeds, as indicated, conversely

by integrating with the help of integrals of the partial differ-

ential equation (2) the Lagrange or canonical equations.

This was the starting point which led Jacobi to his theory.

The other dlscoverer of these relationships, Hamilton, started

from the geometrlca_ meanlng of the characte4istic function, which

to be sure, is very remarkable. If we go from the presentation of

the characteristic function in No. 14 (description in the q t-space)

over to a construction in the f-dlmensional q-space above, then we

get a system of moving characteristic functlon surfaces.

and in general, also extreme-values (path curves) found in flux as

their trajectories. The latter lie firmly in the case discussed

above [equation (7)] of a time-independent Hamiltonian function.

The characteristlc function surfaces according to _ = S - Wit

expand then beyond the fixed surfaces S = constant to the extent

that they always coincide with a new S-surface. The picture is

that of the emission of a series of waves as one usua£1y thinks of

it, for example, in optical processes.

If we take the initial surface F = 0 as the excitation surface

of an optical process, the extreme-values are the light rays in the

sense of geometrical optics and the expanding characteristic func-

tion surfaces are surfaces of like phase, therefore a kind of

wave surface in the sense of the Huygens principle. The prlnciple

of least action then agrees exactLy wxth the Fermat prlnclple of

shortest _nt _athwhenwe assume the refraction index in the
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q-space to be proportional to the root of the kinetic energy, ,_hich

is equal to W - U, therefore, also a pure position function. Thus

the solution of the mechanical problem is related to that of the

correspondlng optlcal problem. The path curves fall together wlth

the rays of optics. The H_milton-Jacobi theory corresponds thus

with geometrical optics. These ideas recently have become the

basis for the further development of quanten mechanics by

Schrodingerl_ which is based on the concept that from the mechanics

of atoms one does not go directly to that of wave optics, but an

extension in the sense of the actual wave must lie as the basis 2).

i)E. Schrodlnger, Leipzig !9_7.

2)"Optlk und Mechanlk", yon A. Lande in Bd. XX ds. Handb.
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